• home

LED Driver Circuit Using CAT3603

CAT3603 is a three channel charge pump LED driver IC from Catalyst Semiconductors that can be operated in either LDO mode or fractional mode. The IC can deliver 30mA per channel and can be operated from an input voltage range of 3 to 5.5V DC. CAT3063 has a quiescent current as low as 0.1uA and this makes it suitable for battery powered applications. The operating frequency is 1Mhz which makes it possible to use small capacitors.

LED Driver Circuit Diagram Using CAT3603
LED Driver Circuit Diagram Using CAT3603

Another features are soft start, current limiting, high efficiency (90%) and short circuit protection. Applications of this IC are hand held devices, LCD back lights , LED lighting gadgets etc. The output current can be programmed using an external resistor connected between the RSET (pin 4) and ground.

Charge pump:


Charge pump is a DC to DC converter circuit that uses capacitors as the energy storage component for creating an output voltage that is either higher or lower than the input voltage. A switching circuit (using BJTs or MOSFETs) is used for connecting and disconnecting the voltages from the storage capacitor.

The switching frequency is usually in the kilo or MHz range. The output voltage will be a pulsed one and it is smoothed using an output filter capacitor. Charge pump circuits can double, triple, quadruple, multiply or scale any given voltage. In theory, a charge pump can generate any desired voltage.

CAT3063 LED driver circuit.


The circuit diagram of a three channel LED driver circuit using CAT3063 is shown below (Fig 1). C4 is an input filter capacitor. R1 is the resistor used for programming the output current. C3 is the output filter capacitor. C1 and C2 are the storage capacitors of the internal charge pump circuit. A logic high at pin 5 will enable the IC and a logic low on the same pin will drive the IC into shutdown mode.

In the shutdown mode, the quiescent current is almost equal to zero. With the used value of R1, the LED current per channel will be 25mA. When powered up the CAT6063 operates in 1X mode i.e, the output voltage will be equal to the input voltage. If this output voltage is enough to regulate the current through all LEDs, the IC remains 1X mode.

If the output voltage is not sufficient enough to regulate the desired current through the LEDs, the device automatically switches to the 1.5X mode where the output voltage is 1.5 times the input voltage. This process is repeated when ever the IC is powered up or awaken from shutdown mode.

Selection of R1 is shown in the table below.


LED current (mA) R1 (kilo ohm)
1 649
5 287
10 102
15 49.9
20 32.4
25 23.7
30 15.4

Notes.


CAT6063 is not suitable for resistive loads.
Unused LED output channels must be connected to Vout pin. They cannot be left floating.
All capacitors are ceramic capacitors.
Dimming of the LEds can be achieved by using a DC voltage for setting the pin4 (RSET) current or by driving the pin5 (EN) using a PWM signal.
There is an exposed pad beneath the IC and it should soldered to the ground plane of the PCB for improved thermal performance.
Supply voltage should not exceed 6V DC.
Total output current should not exceed 120mA.

Simple Inverter Circuit Diagram

Have you ever wanted to run a TV, stereo or other appliance while on the road or camping? Well, this inverter should solve that problem. It takes 12 VDC and steps it up to 120 VAC. The wattage depends on which tansistors you use for Q1 and Q2, as well as how "big" a transformer you use for T1. The inverter can be constructed to supply anywhere from 1 to 1000 (1 KW) watts.

Simple Inverter Circuit Diagram

Simple Inverter Circuit Diagram

Parts:
C1, C2 68 uf, 25 V Tantalum Capacitor
R1, R2 10 Ohm, 5 Watt Resistor
R3, R4 180 Ohm, 1 Watt Resistor
D1, D2 HEP 154 Silicon Diode
Q1, Q2 2N3055 NPN Transistor (see "Notes")
T1 24V, Center Tapped Transformer (see "Notes")
MISC Wire, Case, Receptical (For Output)

Notes:
1. Q1 and Q2, as well as T1, determine how much wattage the inverter can supply. With Q1,Q2=2N3055 and T1= 15 A, the inverter can supply about 300 watts. Larger transformers and more powerful transistors can be substituted for T1, Q1 and Q2 for more power.

2. The easiest and least expensive way to get a large T1 is to re-wind an old microwave transformer. These transformers are rated at about 1KW and are perfect. Go to a local TV repair shop and dig through the dumpster until you get the largest microwave you can find. The bigger the microwave the bigger transformer. Remove the transformer, being careful not to touch the large high voltage capacitor that might still be charged. If you want, you can test the transformer, but they are usually still good. Now, remove the old 2000 V secondary, being careful not to damage the primary. Leave the primary in tact. Now, wind on 12 turns of wire, twist a loop (center tap), and wind on 12 more turns. The guage of the wire will depend on how much current you plan to have the transformer supply. Enamel covered magnet wire works great for this. Now secure the windings with tape. Thats all there is to it. Remember to use high current transistors for Q1 and Q2. The 2N3055s in the parts list can only handle 15 amps each.

3. Remember, when operating at high wattages, this circuit draws huge amounts of current. Dont let your battery go dead :-).

4. Since this project produces 120 VAC, you must include a fuse and build the project in a case.

5. You must use tantalum capacitors for C1 and C2. Regular electrolytics will overheat and explode. And yes, 68uF is the correct value. There are no substitutions.

6. This circuit can be tricky to get going. Differences in transformers, transistors, parts substitutions or anything else not on this page may cause it to not function.

Build a 12v to 5v DC high efficiency SMPS buck converter using 34063 IC

This project converts 12v DC to a regulated 5v DC at up to 1.8 amps, suitable for driving a tablet computer from a 12v car battery in a power blackout etc.

The circuit for this buck converter is nothing original, basically it is the circuit from the 34063 IC datasheet, and all I did was to use an external PFET instead of the external PNP transistor shown in the datasheet. The external PFET allows currents up to a few amps at good efficiency, however I have used hard current limiting at 1.8A for safety and good performance in this prototype.

Energy conversion efficiency is very high due mainly to the choice of external components used with the cheap 34063 SMPS IC.

Build a 12v to 5v DC high efficiency SMPS buck converter using 34063 IC


 PCB layout.
The prototype was tested in hardware, please excuse the messiness. The layout is far from ideal, I did it this way to allow easy swapping of parts and just to be lazy, to save the effort of making a PCB. However it still works pretty good, and a proper PCB would improve performance a little bit.

PFET choice.
I did not have a lot of PFETs in my parts box so I used a 100v 8A rated part. This was an SMD PFET so I just tacked it on the bottom of the PCB. It is efficient enough to not need a heatsink even at 5v 1.5A continuous output. The PFET I used was not ideal, its "Rds on" value is about 0.3v at 1.5A (0.2 ohms) which is too high and costs efficiency. Going to a 50v >20A PFET with an RDS <0.1 ohms or <0.05 ohms would give a noticable increase in efficiency.

Schottky diode choice.
I used a TO-220 60v dual 10A schottky diode pack (total 20A). This is a no-brainer, although this is overkill these diodes are only $1-$2 and can also be pulled for free from any old PC PSU and most commercial SMPS supplies. Besides the safety of being very large and over-rated, the main benefit is these diodes have a very low forward voltage drop of <0.3v at 1.5A or 2A and this equates to reduced losses (more efficiency).

Inductor choice.
This is just a commercial "3 amp" 24mm total diameter inductor/choke available from hobby suppliers like Altronics Australia. I think it is a 220uH or 330uH value, but sorry I lost the paperwork.  A few other powdered-iron toroid inductors were tried and it is not that critical. It has 51 turns of 1.0mm diameter wire if that helps. The inductor measured 0.32mV at exactly 1A DC, so DC resitance was measured at 32 milliohms.

Build a 12v to 5v DC high efficiency SMPS buck converter using 34063 IC


Schematic and operation.
Sorry for the hand-drawn schematic! As you can see the circuit is minimum parts. It uses just two resitors to drive the PFET from the IC (same as the datasheet), this is not ideal but was done to test the concept and see if a PFET can be driven as easily as the PNP transistor normally is. PFET turnon is good at 0.07uS, but turnoff is not great taking 0.8uS. This costs about 1-2% efficiency. The 560 ohm resistor could be reduced to speed up the turnoff, but this would increase losses in that resistor so it is a tradeoff.

34063 SMPS IC.
The 34063 IC does all the clever stuff, mainly it regulates voltage at 1.25v on VFB pin5. Because of the 6k8:2k2 voltage divider on the output, this gives very close to 5v, I actually saw about 5.01v-4.99v Vout in testing, very nice.

Max current limit resistor.
The resistor between Vin and pin7 sets the max inductor current limiting, this was set by me to roughly 0.18 ohms to give 1.8A current limiting. (Imax = 0.32v / R = 0.32v/0.18 = 1.78A). The current limit is best at slightly above the max required current. This gives better safety and also helps stabilise oscillation.

Caps etc.
CT used the datasheet value of 1nF. That gave oscillator value of 26.2kHz measured on pin3 (with no load), however the whole circuit usually operated at 29-33kHz because of the way the regulation works in the IC. The filter caps; 680uF on the input and 1000uF on the output were chosen to be "good enough". Output ripple was approx 25-30mV which is fine.

Measured efficiency!

Vin    Iin   Pin        Vout  Iout   Pout      Eff %    
12.5v 670mA 8.375W 4.99 1.53A 7.63W 91.1%
12.5v 430mA 5.375W 5.00 1.00A 5.00W 93.0%
12.5v 210mA 2.625W 5.00 0.50A 2.50W 95.2%

Note! Readings were taken from meters with only 2 decimal point resolution and were not lab grade accuracy, so there may be a couple of percent error in readings.

Calculating efficiency (at 1.5A output).
The static power losses were seen on the scope and can be calculated;

PFET Rds on period loss = 0.3v / 12.5v = 2.4% loss

DIODE Vf off period loss = 0.28v * 1.53A * 0.56 offduty = 240mW = 2.8% loss

Inductor resistance loss = 1.53A squared * 0.032 ohms = 75mW = 0.9% loss

560 ohm resistor loss = 10.5v squared / 560 * 44% onduty = 87mW = 1.0% loss

Total static losses at 1.53A output = 7.1%
Calculated other (switching) losses = 100% - 91.1% - 7.1% = 1.8%



Scope current L1 inductor (on period) at 5v 1.5 amps.
Above is the on period current through the PFET and L1 inductor. As it is a PFET this is inverted so the pointy bit at the bottom is the max current, the top is zero current. At 1.5A and 32kHz the SMPS is very stable, as switching period is reduced becuase the peaks just hit the 0.32v max current limit set by my choice of 0.18 ohm resistor. (However voltage regulation is still the main regulation).

Duty cycle is about 44%, and current ripple in the inductor is nice and low with inductor current averaging 1.5A (ripple of 0.56A, between 1.22A and 1.78A). The noise spikes I suspect are from from my messy PCB with power and load wires everywhere and scope leads laying around next to the PCB and wiring.




Scope current L1 inductor at 5v 1.0 amps.
Same thing but at 1A. Frequency dropped a bit, closer to the 34063 oscillator freq of 26.2kHz, but still (just) triggering on the max current peaks. Current ripple now larger from approx 0.5A to 1.6A (average output 1A). Timing is still 20uS/hdiv but says 40uS on the screen as I had zoomed my h-axis (sorry).



Scope current L1 inductor at 5v 0.5 amps.
Here the L1 current has gone "discontinuous" meaning the L1 current is reduced to zero during the end of the off period, and has to start from 0 amps again during every on period. Typical of the regulation system used in a 34063 IC, the timing will "stutter" as needed to maintain Vout regulation at a steady 5.0v. This does not matter and the 34063 can be quite energy efficiency when "stuttering" in discontinuous mode like this. At less than 0.5 amps the stuttering can become very erratic looking, but this is all normal.



PFET drain/source voltage (main switching waveform).
(The PFET on period is the top of the waveform). Above you can see the PFET turnon (through a 10 ohm resistor) is nice and fast, It was about 0.07uS turnon time. However the turnoff is poor, because the turnoff is from a 560 ohm resistor and is slow at 0.8uS. This costs significant efficiency.

Using an external digital driver (like a 12v CMOS digital buffer/inverter chip?) to drive the PFET would improve turnoff time a lot and increase efficiency, but this was a test of using the simple datasheet example circuit with an external PFET (instead of the suggested external PNP) and as proof of concept it still works well enough.



5v DC output showing voltage ripple.
Because it is a switching regulator there will always be some ripple on the DC output voltage. This is shown when running at 5v 1.5A and the ripple is typical and acceptable enough at 30-35mV.

Improving efficiency.
This circuit was thrown together very quickly to show how to use a cheap common 34063 IC to get a high efficiency supply from 12v->5v DC at 0-1.5A or so. If you want to invest some effort it can be improved further;

1. My PFET is not a good choice, using a better PFET will give an easy 1% more efficiency, and would be the first choice.

2. The inductor is just an ordinary "off the shelf" type. A properly selected inductor or a good core hand wound for best performance could allow lower operating frequency and less current ripple, and maybe less DC ohms, and maybe pick up another 0.5% efficiency or so. (For lower operating freq CT should also be increased to 1.2nF or 1.5nF etc).

3. The PFET turnoff is too slow. Adding a cheap digital buffer IC could pick up 0.8-1.2% efficiency there from reduced switching losses and reduced loss from the 560 ohm resistor.

4. My PCB has very thin long tracks. Using a well designed PCB with thick short tracks for the main current paths might save 30 milliohms and give maybe 0.5% or more efficiency.

Bill of materials.
* 34063 SMPS 8pin IC (Fairchild/ON Semi/AIS etc, ie MC34063A or NCV34063A).
* 8pin IC socket (optional).
* PFET, rated more than double the input voltage and a few times the desired output current, preferably well under 0.1 ohm Rds on.
* Inductor L1 is a powdered iron toroid of 20-30 mm diameter, with thick wire >1.0mm preferred, 3A rated for a 1.5A capable supply. Value in the 150-470uH range, you may need to try a couple of different types. Ideally current ripple will be <50% at full output current.
* Schottky TO-220 dual 10A or dual 16A diode pack. Choose for low forward voltage, most brands are very good, parts can be found in any old PC PSU.
* 470-1000uF 35v electro cap.
* 1000uF 16-25v electro cap (25v will be larger and generally have a longer life).
* CT 1nF 25-50v ceramic or greencap.
* some 1/4W resistors; 560 ohm, 10 ohm, 6k8, 2k2.
* If you need a test load then a large 10W 4.7 ohm resistor will do.

Modifying the circuit for 12v car operation.
This circuit was designed for a car battery, generally 13.8v to 12.0v when running. If used in a car the circuit needs more protection as the Vin might be >15v at times. I would use a 100 ohm resistor instead of the 10 ohm resistor. Also a 13v zener diode across the 560 ohm resistor will add safety for the PFET. A 12v line filter might also be advised, they can be bought from auto stores.

Modifying the circuit for 24v operation.
Use 560 ohms instead of 10 ohms, so it now has two 560 ohm resistors. And again a 13v zener from PFET gate to source pin. With a 24v Vin you should use a higher inductor value and larger inductor core, 470uH and up are recommended.

[b]Modifying the circuit for high output currents.[b]
The circuit is meant for 5v out, 0-1.8A. It will do ok up to 2.5A just by changing the current limit resistor (at 2.5A the resitor should be 0.12 ohms or so).

Currents up to 5 amps or more should be ok, but use a larger inductor core size rated for more than the max amps you need, and again a larger inductor value helps >470uH is good. The diode pack will be fine, but the PFET should be rated for a few times more current than your max current. If needing 5A output I would use a 40-50v 60A TO-220 PFET which are a common size.

Changing output voltage.
Just change the 6k8 resistor, to change the output voltage to something other than 5.0v. Like most SMPS circuits it works best with roughly 2:1 Vin:Vout ratio, if using different ratios then again increasing the inductor value >470uH will help.


Source: http://forum.allaboutcircuits.com/showthread.php?t=7885 

The emission power of five bands of mobile phone jammer

 The emission power of five bands of mobile phone jammer can be smoothly

adjusted.
This phone is in the end how to design and manufactured it? So today we try to use a technical objective perspective, a brief description of the relationship between the structure of the mobile

phone design department and departments, and finally to show the various tests before the phone to be available by the manufacturer, so that we can further understand the cell phone more cherish

your love machine, perhaps you that it would not easily replace it! handset design process with a relatively simple interpretation of the general mobile phone design companies require a minimum six

departments: ID, the MD, HW, SW, PM, Sourcing, QA. ID (Industry Design) industrial design, including the realization of the phones appearance, texture, feel, color combinations, the main interface

and color design. mobile phone jammer will just shield the cell phone signals and the Wi-Fi signal.
Such as the Motorola "Ming" clamshell translucent, Nokia 7610, the arc-shaped appearance, Sony Ericsson W550 sun orange. These all belong to the special feel and experience of the users mobile

phone industrial design areas, a phone can become the best-selling products, the phones industrial design is of particular importance. The location choice of mobile phone shell, shell, the phones

camera lens fixed way, how to connect the battery, the phones thickness and extent. The slider phone, how to get the phone to slip up, how to achieve the auto-up shells, the SIM card how to insert

and pull out the arrangements, the scope of these cell phones and structural design. Tedious parts of MD staff are very familiar with the materials and processes. The heat resistance of mobile

phone jammer is ultra good.
Motorola V3 to the thickness of 13.9mm set off a craze of mobile phone market, V3 cell phone with ultra-thin as the selling point, because its phone casing material selection is critical, so V3

shell crafted by the advanced technology of aviation grade aluminum material. Can be said that the special choice of shell material achievements of the success of the V3. Addition, individual user

reaction when some of the ultra-thin slider phone, answer the phone can always feel the phone before the shell from side to side, this is the phone structural design problems, due to the shell of

the phone is too thin. speaker vibration when a call is easy to let the phones body to produce resonance.

Loudspeaker Protector Monitors Current

This circuit uses a 0.1O 1W resistor connected in series with the output of a power amplifier. When the amplifier is delivering 100W into an 8O load, the resistor will be dissipating 1.25W. The resulting temperature rise is sensed by a thermistor which is thermally bonded to the resistor. The thermistor is connected in series with a resistor string which is monitored by the non-inverting (+) inputs of four comparators in an LM339 quad comparator. All of the comparator inverting inputs are connected to an adjustable threshold voltage provided by trimpot VR1. As the thermistor heats up, its resistance increases, raising the voltage along the resistor ladder.

Loudspeaker Protector Circuit diagram:

loudspeaker-protector-circuit-diagram-monitors-current
When the voltage on the non-inverting input of each comparator exceeds the voltage at its inverting input, the output switches high and illuminates the relevant LED. NOR gate latches are connected to the outputs of the third and fourth comparators. When the third comparator switches high, the first latch is set, turning on Q1 and relay 1. This switches in an attenuation network (resistors RA & RB) to reduce the power level. However, if the power level is still excessive, comparator 4 will switch, setting its latch and turning on Q2 and relay 2.

This disconnects the loudspeaker load. The thermistor then needs to cool down before normal operation will be restored. The values of R1-R4 depend on the thermistor used. For example, if a thermistor with a resistance of 1.5kO at 25°C is used, then R1 could be around 1.5kO and R2, R3 and R4 would each be 100O (depending the temperature coefficient of the thermistor). The setup procedure involves connecting a sinewave oscillator to the input of the power amplifier and using a dummy load for the output. Set the power level desired and adjust trimpot VR1 to light LED1. Then increase the power to check that the other LEDs light at satisfactory levels.

Source:  http://www.ecircuitslab.com/2011/06/loudspeaker-protector-monitors-current.html

Variable PSU

A variable power supply with adjustable voltage and current outputs made with the L200 regulator. Using the versatile L200 voltage regulator, this power supply has independent voltage and current limits. The mains transformer has a 12volt, 2 amp rated secondary, the primary winding should equal the electricity supply in your country, which is 240V here in the UK. The 10k control is adjusts voltage output from about 3 to 15 volts, and the 47 ohm control is the current limit. This is 10mA minimum and 2 amp maximum. Reaching the current limit will reduce the output voltage to zero.

Variable PSU

Audio Booster Circuit

Small and portable unit, Can be built on a veroboard

The amplifiers gain is nominally 20 dB. Its frequency response is determined primarily by the value of just a few components-primarily C1 and R1. The values of the schematic diagram provide a response of ±3.0 dB from about 120 Hz to better than 20,000 Hz.Actually, the frequency response is ruler flat from about 170 Hz to well over 20,000 Hz; its the low end that deviates from a flat frequency response.

The low ends roll-off is primarily a function of capacitor C1(since RIs resistive value is fixed). If C1s value is changed to 0.1 pF, the low ends comer frequency-the frequency at which the low-end roll-off starts-is reduced to about 70 Hz. If you need an even deeper low-end roll-off, change C1 to a 1.0 pF capacitor; if its an electrolytic type, make certain that its installed into the circuit with the correct polarity, with the positive terminal connected to Q1s base terminal.

Circuit Diagram:

Audio_Booster_Circuit Diagram Audio Booster Circuit Diagram

Parts Description
P1 100K
R1 47K
R2 470K
R3 10K
R4 560R
R5 270R
C1 0.1uF-25v
C2 3.3uF-25v
C3 470uF-25V
D1 5mm. Red Led
B1 9v Battery
J1 RCA Audio Input Socket
J2 RCA Audio Output Socket
S1 On-Off Switch

 

Source :www.extremecircuits.net

Hydrophone Booster Amplifier HA2

Hydrophone Booster Amplifier (HA2)

The HP series Hydrophone Booster Amplifier (HA2) amplifies low-level hydrophone signals over a wide range of frequencies. It has a minimum gain of 25dB and an input and output impedance of 50Ω. The HA2 is designed for use with either Precision Acoustics membrane hydrophone or Precision Acoustics HP Series Hydrophone Measurement System, which is shown in Fig 1.

Hydrophone Booster Amplifier 

Alternatively, the HA2 may be used when the acoustic signal is provided by a high output impedance hydrophone, such as a GEC-Marconi membrane device, or a conventional hydrophone. In this instance a BNC/MCX adaptor is used which connects directly to the HP Series Submersible Preamplifier, using it as a buffer amplifier, (i.e. the standard Precision Acoustic HP Series configuration shown in Fig 1 is used, but without the interchangeable probe).

The HA2 amplifier is straightforward to use but the following points should be noted:

  • The output of the amplifier should be correctly terminated in 50Ω before operation.
  • The HA2 amplifier is non-inverting but this is of no consequence when used with the HP Series interchangeable probes as their design takes this into account. However when a submersible preamplifier is used as a high impedance buffer amplifier (as in Fig 2) the system output from the HA2 will be inverted as the HP Series Submersible Preamplifier is inverting.

Before Connecting the unit please read WARNING

To Connect

To  Disconnect

1 Connect Output Load 1 Remove RF Input
2 Apply DC Voltage 2 Remove DC Volts
3 Apply RF Input 3 Remove Load

Specification (HA2 Amplifier Only)

Voltage Gain = 25dB minimum
Bandwidth =  50kHz to 125MHz ±1.0dB
Maximum Output Level = 29dBm for 1dB compression (18.1V pk – pk into 50Ω load)
Input Impedance = Nominal 50Ω
Output Impedance  Nominal 50Ω (VSWR 2:1)
Output Noise Level = Typically 70μV pk – pk (bandwidth 125MHz)
Noise Figure = Typically 10dB
Phase = Non-inverting
Terminations:
Front panel = Input BNC socket BNC Output socket
Rear panel Power Requirements = 28v dc output to supply DC Coupler 100/120/220/240V ac, 50 to 60Hz,
7.5W
Operating Temperature = 0 to 50°C
Size = (90mm × 205mm ×194mm)
Weight = 2.6kg

Copyright : Precision Acoustics March 2004

Luggage Security System

While traveling by a train or bus, we generally lock our luggage using a chain-and-lock arrangement. But, still we are under tension, apprehending that somebody may cut the chain and steal our luggage. Here is a simple circuit to alarm you when somebody tries to cut the chain. Transistor T1 enables supply to the sound generator chip when the base current starts flowing through t. When the wire (thin enameled copper wire of 30 to 40 SWG, used or winding transformers) loop around the chain is broken by somebody, the base of transistor T1, which was earlier tied to positive rail, gets opened. As a result, transistor T1 gets forward biased to extend the positive supply to the alarm circuit. In idle mode, the power consumption of the circuit is minimum and thus it can be used for hundreds of travel hours.

 

Luggage Security System

To enable generation of different alarm sounds, connections to pin 1 and 6 may be made as per the table.

 

Select 1 (Pin6) Select 2 (Pin1) Sound effect
X X Police siren
VDD X Fire-engine siren
VSS X Ambulance siren
“-” VDD Machine-gun sound

Note: X = no connection; “-” = do not care

Author:DHURJATI SINHA Copyright: Circuit Ideas

Audio Level Threshold Control

This circuit was originally designed for use in detecting discharges from individual neurons, where the infrequent discharges are difficult to separate from dominant background noise. It may also prove useful in other applications that need to detect infrequent low-level audio signals against a noisy background. The audio input signal is buffered by op amp IC1 before being applied to the opposing inputs of comparators IC4 & IC5. Positive and negative offset voltages are generated by VR1 and IC2 and fed to the other two inputs of the comparators. Essentially, the comparators act to produce a negative voltage at their commoned outputs (C) whenever the audio signal exceeds either the positive or negative offset voltage.

Audio level threshold control circuit schematic

The signal at "C" is inverted by transistor Q1 to produce "D". These two signals are used to control a pair of CMOS switches (S1 & S2), which either pass the audio signal to the output or short it to ground. The signal from the CMOS switches is buffered by IC3, which in conjunction with the 10kΩ resistor and 10nF capacitor filters out the switching artefacts. In practice, the offset voltage is adjusted until there is little or no breakthrough of the noise background at the output. Thereafter, only audio signals exceeding the threshold are passed. Inevitably, this produces some crossover distortion but this is of little consequence compared with the benefit of the quiet background.

L200 VOLTAGE REGULATOR SOFT START MECHANISM ELECTRONIC DIAGRAM


L200 VOLTAGE REGULATOR SOFT START MECHANISM ELECTRONIC DIAGRAM

The Vo follows the voltage at pin 2 at less than 0.45 V since a voltage of more than 0.45 V cannot be produced between pins 5 and pins 2.

Constant current ic is charge capacitor C, where

ic= Vsc/R

After the time ton, the output reaches it’s nominal value

Vo-Vsc = (Ic.ton)/C

ton=C.[(Vo-0.45)/0.45].R = CVoR/0.45

12 V Bidirectional Motor Control Circuit

This simple circuit drives DC motors with a maximum current of 1 A and can be built with readily available components.The output voltage is adjustable between 0 and 14 V and the polarity can be changed so that not only motor speed but also rotation direction can be adjusted by turning a knob.
The circuit is also ideal as a controller for a DC model railway or small low voltage hobby tool. Power for the circuit is supplied by a 18 V mains transformer rated at 1.5 A. Diodes D1to D4 rectify the supply and capacitor C1 provides smoothing to give a DC output voltage of around 24 V. A classic ‘H’ bridge configuration is made up with transistors T1/T3 and T2/T4. Transistors T5 and T6 together with resistors R7 and R8 provide the current sense and limiting mechanism. The maximum output current limit can be changed from 1 A by using different value resistors for R7 and R8: IOUT = 0.6 V / R where R gives the value for R7 and R8. For increased current limit the mains transformer and diodes will need to be changed to cope with the extra current as well as the four transistors used in the bridge configuration.
Circuit diagram:
Motor speed control and direction is controlled by a twin-ganged linear pot (P1). The two tracks of P1 together with R1/R2 and R3/R4 form two adjustable potential divider networks. Wiring to the track ends are reversed so that as the pot is turned the output voltage of one potential divider increases while the other decreases and vice versa.
In the midway position both dividers are at the same voltage so there is no potential difference and the motor is stationary. As the pot is rotated the potential difference across the motor increases and it runs faster. The voltage drop across D5 and D6 is equal to the forward voltage drop VBE of the bridge transistors and ensures that the motor does not oscillate in the off position with the pot at its mid point.
Author :Christian Tavernier

Pills Reminder

4 - 6 - 8 - 12 - 24 - 48 hours setting LED or Beep Alert - 9V Battery Supply

Circuit purpose:

A Pills Reminder is a device that operates a flashing LED (and/or a beeper) at a fixed hour interval. A choice of time-intervals as wide as possible is available with this circuit, namely 4, 6, 8, 12, 24 and 48 hours.

Operation Mode:

At first you must choose the hour interval by switching SW1 to the desired value, then apply power by means of SW2.
After the hour delay chosen has elapsed the LED will start flashing at 2Hz, i.e. two times per second. This status will last until pushbutton P1 is pressed: then the LED will turn off, but the circuit will continue its counting and the LED will flash again when the same hour interval as before is reached.

A noteworthy feature of this circuit, usually not found in similar devices, is that the internal counter is not reset when P1 is pressed: this allows a better time-interval precision.Let us explain this feature with an example: suppose you have set the time interval to 24 hours and started the Pills Reminder at 8 oclock. Next day, at 8 oclock the LED will start flashing, but you, for some reason, notice the flashes at 8:10 and press P1 to stop the LED. With most devices of this kind, the counter will be reset, causing the LED to start flashing next day at 8:10 oclock.
This will not happen with this circuit and the LED will start flashing next day always precisely at 8 oclock even if you pressed P1 at 9 or 10 oclock.

Circuit diagram:

Pills ReminderCircuit Diagram Pills Reminder Circuit Diagram

Parts:
R1______________10M  1/4W Resistor
R2,R3,R4_______100K 1/4W Resistors
R5,R7___________10K 1/4W Resistors
R6_______________1K 1/4W Resistor
C1,C2___________22pF 63V Ceramic Capacitors (See Notes)
C3______________22µF 25V Electrolytic Capacitor
C4,C5__________100nF 63V Polyester Capacitors
C6_______________1µF 63V Polyester, Multilayer Ceramic or Electrolytic Capacitor
IC1____________4060 14 stage ripple counter and oscillator CMos IC
IC2____________4040 12 stage ripple counter CMos IC
IC3____________4082 Dual 4 input AND gate CMos IC
IC4____________4075 Triple 3 input OR gate CMos IC
IC5____________4520 Dual binary up-counter CMos IC
IC6____________4001 Quad 2 input NOR Gate CMos IC
D1_____________5 or 10mm red LED
XTAL_________32.768 kHz Sub-miniature Watch crystal
P1_____________SPST Pushbutton
SW1____________2 poles 6 ways Rotary Switch
SW2____________SPST Toggle or Slide Switch
B1_______________9V PP3 Battery
Clip for PP3 Battery
Alternative Clock Parts:

R8_______________1K  1/4W Resistor
R9_____________330K 1/4W Resistor
R10_____________20K 1/2W Cermet or Carbon Trimmer
R11______________1K 1/2W Cermet or Carbon Trimmer
C7_______________1µF 63V Polyester Capacitor
IC7____________7555 or TS555CN CMos Timer IC
Circuit Operation:

The clock of the circuit is made of a stable oscillator built around two inverters embedded into IC1 and a Watch crystal oscillating at 32.768kHz. This frequency is divided by 16384 by the internal flip-flop chain of IC1 and a 2Hz very stable clock frequency is available at pin #3 of this IC.

IC2 counter and IC3A 4 input AND gate are wired in order to divide by 3600 the 2Hz clock, therefore, a pulse every 30 minutes is available at the clock input of IC5.

The division factor of this IC is controlled by IC3B and the position of SW1A and B, selecting from six time-intervals fixed to 4, 6, 8, 12, 24 and 48 hours.

The set-reset flip-flop formed by IC6B and IC6C is set through IC4C each time a low to high transition is present at the pin of IC5 selected by SW1B cursor. IC6A and C4 provide to set the flip-flop also when a high to low transition is present at SW1B cursor.

When the flip-flop is set, IC6D is enabled and the 2Hz frequency available at pin #3 of IC1 is applied to pin #13 of IC6D causing the flashing LED operation. The flip-flop can then be reset by means of P1.

A master reset is automatically done at switch on by means of C6 and R7.

Alternative Clock:

Sometimes, the Watch crystal can be difficult to locate, or could be considered too expensive. For those willing to avoid the use of a Watch crystal and to accept less time accuracy, an alternative clock generator circuit is provided, directly oscillating at 2Hz, thus avoiding the use of divider ICs.

A CMos 7555 Timer IC generates a stable 2Hz square wave, whose frequency must be accurately set by means of two trimmers. R10 must be adjusted first for coarse tuning, then R11 for fine tuning.

Setting precisely the 2Hz frequency of this oscillator is a rather difficult task, and can be done with great patience and the aid of a clock, a chronometer or, best, a digital frequency meter capable of measuring very low frequencies.

In any case, after an accurate setup, this oscillator showed a very stable performance, not affected by battery voltage variations and an accuracy of about ±30 seconds per 24 hours interval.

Notes:

  • Wanting the utmost time precision and if a digital frequency meter is available, a 5-50pF 50V Ceramic Trimmer Capacitor can be used in place of C2. It must be adjusted in order to read exactly 32.768kHz on the meter display with the input probe connected to pin #9 of IC1.

  • A Piezo sounder (incorporating a 3KHz oscillator) can be added to provide a visual plus audible alert. It must be wired across pin #11 of IC6D and negative ground, respecting polarities. Remove D1 and R6 if the visual alert is not needed.

Source : www.redcircuits.com

Broken Charger Connection Alarm

Detects if a device is not properly connected to its supply Suitable for battery chargers, portable appliance supplies etc.
The above circuit can be useful to detect if the load of any battery charger or plug-in adapter supply is not properly connected. The load can be a set of batteries to be charged or any other type of battery or low dc voltage operated device. The circuit can safely operate over a 3 to 15V range and 1A max. Current, provided the supply voltage is about one volt higher than the voltage required by the load.
The circuit is inserted between the supply and the load; therefore, until a trickle-charging current of at least 100µA is flowing towards the load, D1 and D2 will conduct. The forward voltage drop (about 1V) available across the Diodes drives Q2 into conduction and, consequently, Q1 will be cut-off. If no appreciable load is connected across the circuits output, Q2 will become cut-off, Q1 will conduct and the Piezo-sounder will beep.
Circuit diagram:
Parts Description
R1 10K
R2 1K
R3 1K
Q1 BC557
Q2 BC557
D1 1N4007
D2 1N4007
D3 Red LED
BZ1 Piezo Sounder
Notes:
  • An optional LED and its series limiting resistor can be wired in parallel to BZ1, as shown in dotted lines in the circuit diagram.
  • In this case you may omit the Piezo-sounder in order to obtain a visual alert only.

1994 Lumina APV Van Wiring Diagram

1994 Lumina APV Van Wiring Diagram


The Part of 1994 Lumina APV Van Wiring Diagram: camshaft position sensor, hall effect, sensor ground,
amplifier, instrument cluster, red wire, bypass switch, control reference, ignition module control, electronic ignition module, powertrain control module, spark reference input

I O Experimenter Board PCB Version

If you are tired of connecting the same I/O devices every time you prototype a new project then this board could save you a lot of time. All the necessary pins of the devices on the board are accessible through headers that allows easy connection of the board to a breadboard circuit or other development boards (Arduino, etc) using jumper wires.

I/O Experimenter Board (PCB version)

LV8741V PWM Stepping Motor

Using the LV8741V PWM stepping motor driver IC can be designed a very simple and efficiency DC motor driver electronic project . As you can see in the circuit diagram , this electronic project require few external electronic parts . The maximum output current that can be provided by this PWM current-control stepping motor driver IC is up to 1.5 ampere . The reference voltage is set by the voltage applied to the VREF pin and the two inputs ATT1 and ATT2.

LV8741V PWM Stepping Motor Circuit Diagram

When the output current is below the output short-circuit protection current, the output is controlled by the input signal. The setting conditions for the above PWM current-control DC motor driver circuit diagram are as follows : Auto recovery-type output short-circuit protection function (EMM = Low), Output enable function fixed to output ON state (OE = High), Current limit reference voltage setting = 100% (ATT1 = Low, ATT2 = Low) ,Chopping frequency : 37kHz (RCHOP = 43k ).

Voltages required by this LV8741V current-control DC motor driver are from 9.5 to 35 volt for motor power and from 2.7 to 5.5 for logic power supply .

Headphone Amplifier with IR Communication

This low cost project can be used to reproduce an audio from TV without creating any disturbance from other people. No wire will be used by the circuit between the TV and the headphone because instead of using wires, it utilizes the invisible infrared light for the transmission of audio signals from the TV going to the headphone. The range that can be covered can reach up to 6 meters without using any lens but if required, the range can be made to extend with the use of lenses and reflectors with transmitters and receivers that comprise the IR sensors.

Headphone Amplifier with IR Communication Circuit diagram


Two series connected IR LEDS are being driven by the two-stage transmitter amplifier that uses the IR transmitter. The audio output from TV to the IR transmitter is coupled by using an audio output transformer that is reversely connected. The audio signals are amplified by the transistors BC547 & BD140. These audio signals are received from TV through the low output impedance windings for TV connection of the audio transformer while high impedance for IR transmitter connection.

A 9V source can power the IR transmitter with the LED functioning as power-on indicator.

Battery Charger Using LTC4078

Using the LTC4078 standalone linear charger circuit you can design a very simple single-cell battery charger circuit for Li-Ion Li-Polymer battery . This LTC4078 battery charger circuit works from both wall adapter and USB inputs. This charger can detect power at the inputs and automatically select the appropriate power source for charging.

Battery Charger Using LTC4078 Circuit diagram



As you can see in the circuit diagram , this Li-Ion Li-Polymer charger requires few external components and you will need to apply just few equations ,to design a full work USB , wall adapter charger .
The charge current can be programmed up to 950mA from wall adapter input . IUSB pin is used for program the charge current for USB power that can be programmed by connecting a resistor to the ground.

The voltage on this pin can be used to measure the battery current delivered from the USB input using the following formula: IBAT = (VIUSB/RIUSB)*1000 . ITERM pin is the termination current threshold program that is set by connecting a resistor to ground. ITERMINATE is set by the following formula:
ITERMINATE =100V/RITERM ; RITERM =100V/ITERMINATE IDC pin is used for program the charge current for wall adapter power that is set by connecting a resistor to ground.The voltage on this pin can be used to measure the battery current delivered from the DC input using the following formula: IBAT = (VIDC/RIDC)*1000 .

The charge current delivered to the battery from the wall adapter or USB supply is programmed using a single resistor from the IDC or IUSB pin to ground and can be calculated using the following equations:
RIDC =1000V/ICHRG-DC , ICHRG-DC = 1000V/RIDC - Wall adapter
RIUSB =1000V/ICHRG-USB , ICHRG-USB =1000V/RIUSB – USB port.

Automatic Loudness Control Circuit

This is a simple design for automatic loudness control in audio. A simple approach to this problem can be done inserting a circuit in the preamplifier stage, capable of varying automatically the frequency response of the entire audio chain in respect to the position of the control knob, in order to keep ideal listening conditions under different listening levels. This is a figure of the circuit.


The circuit is shown with SW1 in the "Control-flat" position, i.e. without the Automatic Loudness Control. In this position the circuit acts as a linear preamplifier stage, with the voltage gain set by means of Trimmer R7. Switching SW1 in the opposite position the circuit becomes an Automatic Loudness Control and its frequency response varies in respect to the position of the control knob by the amount shown in the table below. C1 boosts the low frequencies and C4 boosts the higher ones. Maximum boost at low frequencies is limited by R2; R5 do the same at high frequencies.

This is a list component that must using for built the circuit.
P1 10K Linear Potentiometer (Dual-gang for stereo)

R1, R6, R8 100K 1/4W Resistors
R2 27K 1/4W Resistor
R3, R5 1K 1/4W Resistors
R4 1M 1/4W Resistor
R7 20K 1/2W Trimmer Cermet

C1 100nF/63V
C2 47nF/63V
C3 470nF/63V
C4 15nF/63V
C5, C9 1µF/63V
C6, C8 47µF/63V
C7 100pF/63V

IC1 TL072 Dual BIFET Op Amp

SW1 DPDT Switch (four poles for stereo)

1995 Volvo 850 Turbo Replacing the Radiator Fan Belt on the 1995 Volvo 850 Turbo




Is the fan that is located in the motor of a fan in 1995 Volvo 850 Turbo, a radiator fan belt? How to replace it?



Answer: No. The car, the Volvo 850 is powered by a transverse engine, the radiator and the fan are mounted across the front and they are driven directly by the motor.
However, at the end of the engine the belt that was once called the fan belt is still there in your car. It doesn’t drive the fan, like it did in older cars (and still does in many longitudinally-engined cars), but it will drive the alternator, water pump, power-steering pump and (if fitted) air-conditioning compressor. Many people still refer to this belt as the fan belt, although the correct term is accessory drive belt.

Bipolar Power supply for Battery Instruments Circuit Diagram

Bipolar Power supply for Battery Instruments Circuit Diagram. To generate regulated ± 5-V supplies from a pair of dry batteries, the circuit of Fig. 1 is commonly used. In order to give protection from inadvertent reverse connection of a battery, a diode in series with each battery would produce an unacceptable voltage drop. The more effective approach is to fit diodes Dl and D2 as shown in Fig. 2, in parallel with each battery. 

When the supply is switched off, there is the risk of a reverse bias being applied across the regulators, if there is significant inductance or capacitance in the load circuit. Diodes across the regulators prevent damage. When the power supply is switched on, the two switches do not act in unison. There is a probability that one or the other regulators will be latched hard off by the other. To prevent this, D3 and D4 are Zener diodes so that ± 5-V rails are pulled up by the batteries until the regulators establish the correct levels.

 Bipolar Power supply for Battery Instruments Circuit Diagram


Bipolar Power supply for Battery Instruments Circuit Diagram

Drawing Software Building Wire Diagrams Ladder Diagrams

Wiring Diagram Software on Drawing Cad Software For Building Wire Diagrams And Ladder Diagrams
Drawing Cad Software For Building Wire Diagrams And Ladder Diagrams.


Wiring Diagram Software on Wiring Diagram Software   Download The Best Free
Wiring Diagram Software Download The Best Free.


Wiring Diagram Software on Windows   Xp   2000
Windows Xp 2000.


Wiring Diagram Software on Volvo Wds Wiring Diagram Service Repair Manual   Ecufactory Com
Volvo Wds Wiring Diagram Service Repair Manual Ecufactory Com.


Wiring Diagram Software on Software Busch Script Lettering Software Installation And Operating
Software Busch Script Lettering Software Installation And Operating.


Wiring Diagram Software on Wiring Diagram Software
Wiring Diagram Software.


Wiring Diagram Software on Related Products Software Busch Script Lettering Software Software
Related Products Software Busch Script Lettering Software Software.


Wiring Diagram Software on Free Car Wiring Diagram Software Websites   Sites Google Com  Mp3car
Free Car Wiring Diagram Software Websites Sites Google Com Mp3car.


Wiring Diagram Software on Diagram Software Power Door Lock Suzuki 1997 Golf Window Diagram
Diagram Software Power Door Lock Suzuki 1997 Golf Window Diagram.


Wiring Diagram Software on Roundhillsoftware Com
Roundhillsoftware Com.


78S09 9 Volt 2 Amp Power Supply

 All the work is done by the regulator. The 78S09 can deliver up to 2 amps continuous output whilst maintaining a low noise and very well regulated supply.
The circuit will work without the extra components, but for reverse polarity protection a 1N5400 diode is provided at the input, extra smoothing being provided by C1. The output stage includes C2 for extra filtering, if powering a logic circuit than a 100nF capacitor is also desirable to remove any high frequency switching noise.

 
78S09 9 Volt 2 Amp Power Supply 

Sub Woofer and Controller Rise

Sub woofers are popular, with home theater being of the driving forces. However, a nice sub adds considerably to normal hi-fi program material, & so if it is predictable & has nice response characteristics.

 all of sub woofers use a immense speaker driver in a immense box, with tuning vents & all the difficulties (& vagaries) that conventional operation entails. By conventional, I mean that the speaker & cabinet are operated as a resonant technique, using the Thistle-Small parameters to get a box which will (if everything works as it ought to) provide excellent performance.

Completed Prototype

A fast word is warranted here, to let you decide if the speaker you have will actually work in a little sealed enclosure. The EAS principle will permit any driver to extend to twenty Hz or even lower. A lovely fast check is to stick the speaker in a box, and drive it to 100W or so at twenty Hz - you ought to see lots of cone movement, a few things will rattle, but you should not actually listen to a tone. A "bad" speaker will generate 60 Hz (third harmonic) - in the event you dont listen to anything, the speaker will work in an equalized sub.

If a tone is audible, or the speaker shows any signs of distress (such as the cone breaking up with appropriate terrible noises), then the driver cannot be used in this manner. Either discover a different driver, or use a vented enclosure.

Before you can build your own EAS box, you will require to pick an appropriate driver, using the above as a guide. Cone tour will be high at the lowest frequencies, so the speaker needs to be able to high power, lovely tour, & of reasonable size (there is no substitute for cone area for moving air at low frequencies). I am using a 380mm (15") driver, but smaller drivers (say 300mm - 12") can be used, or even a bigger number of smaller drivers. I have also had excellent results with a single 300mm driver, which has lower sensitivity (as would expect) but is perfectly adequate for normal usage.


The check methods I used are applicable to any combination, but in general I recommend either a single giant driver or a pair of (say) 300mm units. The next hurdle is the amplifier needed to drive the speaker. This is not trivial. If the selected driver has a sensitivity of 93dB / W @ one metre, then you can safely assume that the efficiency will be less than this below resonance, by a factor of possibly 6dB or more. In case you are used to driving a sub with 100W, this means that you have increased the power to 400W - although this is an over-simplification.

If they are to operate the sub from 60Hz (my aim from the outset), they will increase the power by 12dB for each octave, so if 20W is necessary at 60Hz, then at 30Hz this has increased to 320W, & at 15Hz, you will require over 5kW.

Fortunately, the reality is a tiny different, & 400W or so will be over sufficient for a powerful process, due chiefly to the fact that the energy content in the low bass region is not normally all that great. (Although some program material may have high energy content, in general this is not the case). The EAS process augments the existing process, which is allowed to roll off naturally - contrast this with the normal case, where a crossover is used to separate the low bass from the main process, so existing speaker capability is lost.

The box I built is made from 25mm (1") MDF (Medium Density Fiberboard), & filled with fiberglass. Apart from the fact that it is very heavy (which is a lovely thing, because it desires to walk with low frequencies), the cabinet is acoustically dead, with no resonances in the low frequencies at all ( unlike my house & furniture, dammit !). The woofer is recessed in to the baffle, & sealed with weather sealing foam. When attaching the speaker, do NOT use wood screws, or any other screw in to the MDF. I used "Tee" nuts. I have no idea what they are called elsewhere in the world, but they look like this

TEE NUT

The middle is tapped, and accepts a metal thread screw, and the small spikes mean that you must drill a hole, and hammer in the Tee nut. In case you use a screw through the hole and screwed lightly in to the Tee nut, you can hold it in place as you bash away at it, and can also see that it is straight when you are done. make sure that the finish of the screw doesnt stick out the finish, or you will seldom remove it again after the hammering! I recommend that you lock the tee nut in to place with some construction adhesive (dont get any in the threaded section) so they dont fall out while you are installing the speaker.

The EAS Controller
The controller is (actually very) simple, & the circuit is shown in Figure one. An input buffer ensures that the input impedance of the source does not affect the integrator performance, & allows summing of left & right channels without any crosstalk. The output provides a phase reversal switch, so that the sub can be properly phased to the remainder of the process. If the mid-bass disappears as you advance the level control, then the phase is wrong, so switch to the opposite position.

Figure 1 - The Original EAS Filter / Controller

It turns out that the controller can be simplified, but there is no point. While the dual pot appeared like a lovely suggestion when I built my unit, it actually only changes the gain. Now, having experimented some more, this is an excellent thing, since it means that the level through the controller can be set to make positive that there is no distortion - there can be a immense amount of gain at low frequencies, & if the gain is high, distortion is assured!

The integrators (U1B & U2A) include shelving resistors (R6 & R9), & the capacitor / resistor networks (C1-R4, C3-R7) be positive that signals below 20Hz are attenuated. In case you dont require to go that low, then the worth of the caps (or the resistors R4 & R7) can be reduced. I used four.7uF caps, & these are non-polarized electrolytic - a high value was needed to keep the impedance low to the integrators. I originally included the dual pot (VR1) to permit the upper frequency roll off to be set - however it does no such thing (as described above). The final output level is set with VR2, which may be left out if your power amp has a level control.

It is OK to substitute different op amps, but there is tiny reason to do so. Any substitution tool ought to be a FET input op amp, or DC offset may be an issue. Do not be tempted to make use of a DC coupled amp. If the you are planning to make use of is DC coupled, the input ought to be isolated with a capacitor. Pick a value to give a -3dB frequency of about 10Hz, as this will have tiny effect on the low frequency response, but will help to attenuate the subsonic frequencies.

The unity gain range (using a 20k pot as shown) is from 53Hz to 159Hz. This ought to be sufficient for most systems, but if desired, the resistors (R5 & R8) can be increased in value to 22k, or you can select a bigger value pot. Using 22k resistors & the 20k pot will give a range from 36Hz to 72Hz.

To permit lower frequencies, you can increase the 100k shelving resistors (R6 and R9) to 220k, and increase the high pass capacitors (four.7uF) with 10uF (or R4 & R7 may be increased - a maximum of four.7k is recommended). This will give a turnover frequency of around 8Hz, but expect to make use of much more power, as there will likely be significant sub-sonic energy that will generate huge cone excursions with no audible benefit.

The input must be a standard full range (or for a stampeded method, the whole low frequency signal). Do not use a crossover or other filter before the EAS controller. For final modification, and to integrate the method in to your listening room, I recommend the constant-Q equalizer. The final result using this is extraordinarily nice - I have flat in-room response to 20Hz!

For the power supply, use the in anything else will provide +/-15V at a few Milli amps. My supply is not even regulated, & the whole method is as close to noiseless as you will listen to (or not listen to). Construction is not critical - I built mine on a piece of Overboard (perforated prototype board), & managed to fit everything (including the power supply rectifier & filter) on a piece about 100 x 40 millimeters with room to spare.

The EAS method is surprisingly simple to set up with no instrumentation. Of coursework in case you have an SPL meter & oscillator you can also confirm the settings with measurements. Keep in mind that the room acoustics will play havoc with the results, so unless you require to drag the whole method outside, setting by ear might be the simplest. Even in case you did get it exactly right in an anechoic surroundings, this would alter one time it was in your listening room anyway.

It takes a small experimentation to get right, but is surprisingly simple to do. When properly set, a check track (or bass guitar) ought to be smooth from the highest bass note to the lowest, with no gross peaks or dips. Some are inevitable because of room resonances & the like, but you will discover a setting that sounds "right" with small difficulty.

Performance Of My Prototype
I measured 80dB SPL at one meter in my workshop (sub-woofer perched on a chair in more or less the middle of the space) with at 25Hz & 70W. This improved dramatically when the unit was installed in the listening room, but as I said earlier, there is usually not a lot recorded below around 35Hz. The longest pipe on the organ is usually about 16Hz, but larger pipes still may be used. It was found necessary to cease group of diapasons (able to 8Hz) in the famous Sydney Town Hall organ because when they were used, the very low frequency caused building destroy.

A couple of orchestral recordings revealed traffic (or perhaps underground railway) rumble that I was unaware of before (however this was before it was set correctly, and the bass was a tad louder than needed). One time set up properly, its presence is unobtrusive - except I now have about and a half octaves of additional bottom finish.

I finally decided on a 20Hz maximum frequency (-3dB), and this is reflected in the part values shown in Figure one. The actual roll-over frequency is 16.5Hz, after which the output is attenuated at about 12dB / octave (see Figure two). Without the roll off capacitors, the gain would be 20dB at 20Hz. Unity gain frequencies are about 4Hz and 63Hz with the 20k pot(s) centered.

Figure 2 - Frequency Response of EAS Controller

awesome Australian readers may recognize the woofer brand in the picture (Figure three) of my done unit. The compact size of the box can be seen from the fact that there is tiny spacing around the speaker itself, and most of what is there is the top and sides - I used 25mm MDF, so it makes the outside of the box a bit bigger than the inside. Outside dimensions are 470W x 450H x 410D (18 1/2"W x 17 1/2"H x 16"D), which gives a capacity of 60 liters (about two.1 ft³ - excluding the internal space occupied by the speaker. I think you would agree that this is a small box indeed for a 380mm loudspeaker that performs down to 15Hz.

Figure 3 - Photo of Completed EAS Cabinet


Overall, I would must say that I doubt that any conventional design would be as compact, or would have such clarity & solidarity. Being a sealed box, there is not of the "waffle" that ported designs often give, & the speaker is protected against excessive tour by the air pressure in the box itself (below the cutoff frequency, anyway).

The bottom finish in my technique is now staggering. It is rock solid, & absolutely thunders when called on. The 400W amp is over sufficient for the job, thinking about its to keep up with a biamped main technique able to high SPL (up to 120dB at my listening position). In fact a fast check indicates that 200W would have been (but . better to have it & not require it than require it & not have it).

The fact that the EAS design augments the existing speakers than taking over from them with a crossover goes a long way towards ensuring the power requirements do not get out of hand. As an added benefit, I have found that I get the same aural sensation at much lower SPLs - I can listen happily at 90dB, but it sounds much louder. I may even listen to the phone ring while listening now !
All in all, I feel it is unlikely that anything other than an isobaric enclosure could give the same performance for a box size even close to the EAS box,& even then would be limited to about 35Hz. Added to this is the unpredictable combined response of the main speakers and the sub, which is not an Problem with this design. With an EAS system, more power is necessary than a standard design, but for plenty of people, power is less costly than space.