Signal Tracer
1999 Chevrolet Chevy Tahoe Wiring Diagram
1999 Chevrolet Chevy Tahoe Wiring Diagram |
connector, diesel, fuse block, steering ctrl, vehicle, engine ctrl, powertrain ctrl module, steering wheel position signal, case ctrl, passlock sensor, scurity lamp, instrument cluster, passlock module, black wire, cylinder, hall effect, magnet
Four Stage FM Transmitter
Circuits diagram :
Assemble the circuit on a general-purpose PCB. Install the antenna properly for maximum vary. Coils L1 via L5 are made with 20 SWG copper-enamelled wire wound over air-cores having 8mm diameter. They have 4, 6, 6, 5 and seven turns of wire, respectively.
0 30 Volt Power Supply
Light Switch Wiring
Light And Outlet 2 Way Switch Wiring Diagram.
Wire How To Wiring Diagram Single Switch And Light Alternate.
How To Wire A Switch Switch And Light At End Of Circuit.
Two Way Light Switch Wiring.
Wiring A Light Switch For A Ceiling Light Diy Project.
Honda Civic Hybrid Fog Light Wiring Circuit Schematic Diagram Arya.
Light Switch Diagram Power Into Light Pdf 44kb.
Vn800 Turn Signal Light Circuit Wiring Diagram Circuit Schematic.
Home Outdoor Lighting Wiring Diagram.
Wiring Diagram Light Switch Wiring Diagram Light Switch 64038.
Alternator Bracket Mounting Line Wiring
Do This An Nothing Else.
Alternator Regulator Troubleshooting.
Alternator Bracket For The Top Mounting About 15 On Line The Wiring.
1994 Saturn Sl2 Problem New Alternator Bad Electrical 4 Cyl Front.
6610s Alternator Wiring Yesterday S Tractor Co.
Thread Toyota Alternator Install.
Image Hosting Free Photo Sharing Video Sharing At Photobucket.
12v Marine Tachometer Diesel Alternator Wiring Instruction.
1972 Ford F100 Alternator Voltage Regulator Wiring Fixya.
Delco One Wire Alternator Installation On 5000 Ford Mf135 Wiring Rjs.
Battery Charger with Temeperature Sensor
Battery charger with temperature sensor schematic |
Light Dependent Resistors
The animation opposite shows that when the torch is turned on, the resistance of the LDR falls, permitting current to have it.Circuit Wizard software has been used to show, the vary of values of a ORP12, LDR .
When a light-weight level of a thousand lux (bright light) is directed towards it, the resistance is 400R (ohms).
When a light-weight level of ten lux (very low light level) is directed towards it, the resistance has risen dramatically to ten.43M (10430000 ohms).
When the sunshine level is low the resistance of the LDR is high. This prevents current from flowing to the bottom of the transistors. Consequently the LED doesnt lightweight. However, when lightweight shines onto the LDR its resistance falls and current flows into the bottom of the primary transistor and then the second transistor. The LED lights.
The preset resistor will be turned up or right down to increase or decrease resistance, during this means it will build the circuit additional or less sensitive.
Source by : Streampowers
Solar Powered SLA Battery Maintenance
Honda XL100 Electrical Wiring Diagram
Honda XL100 Electrical Wiring Diagram |
tachometer, fuse, headlight control switch,silicon rectifier, wire harness, tail light, sub cord, tail/stop light, condenser, contact breaker, spark plug, horn, turn signal, headlight, emergency kill switch, main switch, stop switch, battery, neutral switch.
Digital Object Counter using LDR and digital IC 7490
configured as a monostable mode, is a simple automatic dark sensor
circuit that gives output when light falling is blocked on LDR. Pin 3 of
monostable circuit has been connected to pin 4 of astable timer. When
monostable circuit generates output, astable mode timer starts giving pulses to the counter module. Frequency for counter module is set up using R4, R3 and C2.
to display numbers on seven segment display. This circuit counts from 0
to 9. You can count 0 to 100 modifying counter module circuit. Just
adding few components as well as two counter ic, two display driver and two display. For count 0 to 100, comments on the comments box. You will get complete circuit.
10 000x With One Transistor
For simplicity, and assuming room temperature, we round this value to 40. For a single stage amplifier circuit with grounded emitter it holds that the gain Uout /Uin (for AC voltage) is in theory equal to SRc. As we observed before, the slope S is about 40Ic. From this follows that the gain is approximately equal to 40I cRc. What does this mean? In the first instance this leads to a very practical rule of thumb: that gain of a grounded emitter circuit amounts to 40·I c·Rc, which is equal to 40 times the voltage across the collector resistor.
If Ub is, for example, equal to 12 V and the collector is set to 5V, then we know, irrespective of the values of the resistors that the gain will be about 40R(12–5) = 280. Notable is the fact that in this way the gain can be very high in theory, by selecting a high power supply voltage. Such a voltage could be obtained from an isolating transformer from the mains. An isolating transformer can be made by connecting the secondaries of two transformers together, which results in a galvanically isolated mains voltage.
Circuit diagram:
That means, that with a mains voltage of 240 Veff there will be about 340 V DC after rectification and filtering. If in the amplifier circuit the power supply voltage is now 340 V and the collector voltage is 2 V, then the gain is in theory equal to 40 x (340–2). This is more than 13,500 times! However, there are a few drawbacks in practice. This is related to the output characteristic of the transistor. In practice, it turns out that the transistor does actually have an output resistor between collector and emitter.
This output resistance exists as a transistor parameter and is called ‘hoe’. In normal designs this parameter is of no consequence because it has no noticeable effect if the collector resistor is not large. When powering the amplifier from 340 V and setting the collector current to 1 mA, the collector resistor will have a value of 338 k. Whether the ‘hoe’-parameter has any influence depends in the type of transistor. We also note that with such high gains, the base-collector capacitance in particular will start to play a role.
As a consequence the input frequency may not be too high. For a higher bandwidth we will have to use a transistor with small Cbc, such as a BF494 or perhaps even an SHF transistor such as a BFR91A. We will have to adjust the value of the base resistor to the new hfe. The author has carried out measurements with a BC547B at a power supply voltage of 30 V. A value of 2 V was chosen for the collector voltage. Measurements confirm the rule of thumb. The gain was more than 1,000 times and the effects of ‘hoe’ and the base-collector capacitance were not noticeable because of the now much smaller collector resistor.
Copyright: Elektor Electronics
1994 Lumina APV Van Wiring Diagram
1994 Lumina APV Van Wiring Diagram |
RGB Solar Lamp
Simple Remote Control Tester
1983 Ford Thunderbird Wiring Diagram
1983 Ford Thunderbird Wiring Diagram |
Wireless FM Transmitter
The wireless transmitter circuit built around transistor T1 (BF494) is a basic low-power variable-frequency VHF oscillator. A varicose diode circuit is included to change the frequency of the fm transmitter and to provide frequency modulation by audio signals. The output of the oscillator is about 50 milliwatts. Transistor T2 (2N3866) forms a VHF-class A power amplifier. It boosts the oscillator signals’ power four to five times. Thus, 200-250 milliwatts of power is generated at the collector of transistor T2.
FM wireless transmitter circuit diagram For better results, assemble the circuit on a good-quality glass epoxy board and house the transmitter inside an aluminium case. Shield the oscillator stage using an aluminium sheet.
Coil winding details are given below:
L1 – 4 turns of 20 SWG wire close wound over 8mm diameter plastic former.
L2 – 2 turns of 24 SWG wire near top end of L1.
(Note: No core (i.e. air core) is used for the above coils)
L3 – 7 turns of 24 SWG wire close wound with 4mm diameter air core.
L4 – 7 turns of 24 SWG wire-wound on a ferrite bead (as choke)
Potentiometer VR1 is used to vary the fundamental frequency whereas potentiometer VR2 is used as power control. For hum-free operation, operate the wireless fm transmitter on a 12V rechargeable battery pack of 10 x 1.2-volt Ni-Cd cells. Transistor T2 must be mounted on a heat sink. Do not switch on the transmitter without a matching antenna. Adjust both trimmers (VC1 and VC2) for maximum transmission power. Adjust potentiometer VR1 to set the fundamental frequency near 100 MHz.
This fm wireless transmitter should only be used for educational purposes. Regular transmission using such a transmitter without a licence is illegal in most countries.
6V Ultra Bright LED Chaser
Battery: Four AA alkaline cells.
Battery life:
Minimum speed and brightness 2.3 years
Medium speed and brightness 1 year
Minimum speed, maximum brightness 4.1 months
Maximum speed and brightness 3.8 weeks
Brightness: controlled with Pulse width Modulation, from off to extremely bright (4000mcd).
Stepper speed: 2 LEDs/sec to 2 revolutions/sec.
Pulse Width Modulation frequency: 3.9KHz.
LED current: 24mA pulses.
LED voltage drop: 3.2V at 24mA. Blue, green and white Ultra-Bright LEDs are suitable.
Minimum battery voltage:
<3V, oscillators do not run.
3V, LEDs are very dim.
4V, LEDs reach almost full brightness.
Radio interference: none.
- The CD74HC4017N high-speed Cmos IC is rated for a maximum supply voltage of 7V. It is rated for a maximum continuous output current of 25mA. In this project, the maximum supply voltage is 6.4V with brand new battery cells and the 24mA output current is so brief that the IC runs cool.
- The MC14584BCP* IC (Motorola) is an ordinary “4XXX series” 3V to 18V Cmos IC, with a very low operating current and low output current. Its extremely high input resistance allows this project to use high value resistors for its timers and oscillators, for low supply current. Its 6 inverters are Schmitt triggers for simple oscillators and very quick switching.
- IC2 is a 10 stage Johnson counter/decoder. On the rising edge of each clock pulse its outputs step one-at-a-time in sequence. It drives the anode of each conducting LED toward the positive supply.
- IC1 pins 1 and 2 is a Schmitt trigger oscillator with C3 and C4 paralleled for a very low frequency. R1 and R2 control its frequency and the diodes with R3 combine with the capacitors to produce the 15mS on time for the LEDs.
- IC1 pins 5 and 6 is the brightness Pulse Width Modulation oscillator. The pot R7 with the associated diodes and resistors allow it to change the duty-cycle of its output for PWM brightness control. It drives the transistor.
- IC1 pins 3 and 4 is an inverter. It takes the low time (LEDs off) from the clock oscillator, inverts it to a high and shuts-off the brightness oscillator through diode D6.
- IC1 pins 11 and 10 is a sample-and-hold stage. It takes a sample of the pulse driving LED #9 though D3 and R4 and charges C5 in steps. At maximum speed it takes 4 steps for C5 to charge to the Schmitt switching threshold voltage. R5 and D5 slowly discharge C5 for the pause time.
- IC1 pins 13 and 12 is an inverter that resets the counter/decoder and shuts-off the clock oscillator through D4, during the pause time.
- IC1 pins 9 and 8 is not used and is shut-off by grounding its input.
- T1 is the PWM switching transistor. R9 limits the maximum LED current to 24mA.
1 IC1 MC14584BCP (Motorola) * Ordinary Cmos hex Schmitt trigger inverters
1 IC2 CD74HC4017N High-speed Cmos decade counter/decoder
1 T1 2N3904 or 2N4401 NPN transistor
8 D1 to D8 1N4148 or 1N914 Diodes
10 LEDs Blue, green or white Ultra-Bright LEDs with Vf = 3.2V or less at 20mA
1 R1 100K 1/4W resistor
1 R2 1M Linear-taper potentiometer
1 R3 33K 1/4W resistor
1 R4 2.2M 1/4W resistor
1 R5 22M 1/4W resistor
1 R6 47K 1/4W resistor
1 R7 1M Audio-taper (logarithmic) potentiometer
1 R8 1.8K 1/4W resistor
1 R9 68 ohms 1/4W resistor
1 C1 100uF/16V Electrolytic capacitor
1 C2 0.1uF/50V Ceramic capacitor
2 C4 and C4 1uF/63V Metalized poly capacitor
1 C5 470nF Metalized poly capacitor
2 C6 and C7 1nF Metalized poly capacitor
A 3V LED Chaser project also works well with these changed parts but using a CD74HC14N for IC1.
In addition to these changes, R8 = 680 ohms and R9 = 22 ohms. I built one using low-voltage (1.8V at 20mA) orange Ultra-Bright LEDs. The orange one looks good beside the green one.
Attachments: 6V LED Ultra-Bright Chaser schematic, Veroboard layout and 3 pictures.
I wish I knew how to take a slow picture with my son’s digital camera, so all the LEDs would be lighted, and if I moved it would make nice lighted smears in the picture.
Crowbar Speaker Protection
Theres really nothing to it. A resistor / capacitor circuit isolates the trigger circuit from normal AC signals. Should there be enough DC to activate the DIAC trigger, the cap is discharged into the gate of the TRIAC, which instantly turns on ... hard. A TRIAC has two basic states, on and off. The in-between state exists, but is so fast that it can be ignored for all intents and purposes.
Apart from the obvious requirement that you dont make any mistakes, construction is not critical. Wiring needs to be of a reasonable gauge, and should be tied down with cable ties or similar. C1 must be polyester. While a non-polarised electrolytic would seem to be acceptable, the circuit will operate if the capacitor should dry out over the years. This means it will lose capacitance, and at some point, the crowbar may operate on normal programme material. This would not be good, as it will blow up your amplifier!
Video Out Coupling
If you want to connect a video signal to several destinations, you need a distribution amplifier to match the 75-ohm video cable. A distribution amplifier terminates the incoming cable in 75 ohms and provides several outputs, each with 75-ohm output impedance. Since this is usually achieved by putting a 75-ohm series resistor in the output lead of each video opamp (current-feedback amplifier), the opamps must be set up for a gain of 2 in order to achieve an insertion gain of 1 (0 dB). The disadvantage of this arrangement is that if the amplifier or its power supply fails, no signal is available at any of the outputs. This can be remedied by using a high input impedance amplifier, which can be tapped into a video line without having to have its own 75-ohm termination resistor.
In order to eliminate hum interference and voltage differences between the cable screen and the circuit earth, the circuit exploits the common-mode rejection of the opamp. This can be optimized with resistor RG1. With the indicated LT1396 video opamp, more than 40 dB of common-mode rejection can be achieved. The signal bandwidth of the circuit can be optimized using the trimpots. It reaches to more than 10 MHz, which is quite acceptable for video signals. Thanks to the high-impedance connection to the video line, the video signal is not affected when the power for the coupled amplifier is switched off. You can learn more about the LT1396 from its data sheet at http://www.linear-tech.com.
Laptops Cord Stays off Your Lap with this Clip
This clip is especially bendy if you are lounging on the sofa with the power-cord-side in towards the cushions. It keeps your MacBooks power cord under control with this trick and to stop it from tugging in you. Its built-in cable clip the one that keeps your cord wrapped around the power brick and clip it to the side of your laptops screen.